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We present the master �i.e., unique� behavior of the squared capillary length—the so-called Sugden
factor—as a function of the temperaturelike field along the critical isochore, asymptotically close to the
gas-liquid critical point of about twenty �one-component� fluids. This master behavior is obtained using the
scale dilatation of the relevant physical fields of the one-component fluids. The scale dilatation method intro-
duces the fluid-dependent scale factors in a manner analog to the linear relations between physical fields and
scaling fields needed by the renormalization theory applied to any physical system belonging to the Ising-like
universality class. The master behavior for the Sugden factor satisfies hyperscaling. It can be asymptotically
fitted by the leading terms of the theoretical crossover functions for the correlation length and the susceptibility
in the homogeneous domain, recently obtained from massive renormalization in field theory. In the absence of
corresponding estimation of the theoretical crossover functions for the interfacial tension, we define the range
of the temperaturelike field where the master leading power law can be practically used to predict the singular
behavior of the Sugden factor, in conformity with the theoretical description provided by the massive renor-
malization scheme within the extended asymptotic domain of the one-component fluid “subclass.”
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I. INTRODUCTION

The knowledge of interfacial properties �1� for a nonho-
mogeneous fluid of coexisting vapor and liquid at equilib-
rium is of prime importance for many engineering applica-
tions and process simulations. Moreover, accurate
predictions of these interfacial properties are essential to gain
confidence in modeling fluid flow in porous media, oil recov-
ery, gas storage in geological formations, pool boiling phe-
nomena, microfluidic devices based on wetting phenomena,
etc.

A large number of different forms of related phenomeno-
logical laws, the so-called “ancillary equations,” are reported
in the literature to calculate interfacial properties along the
vapor-liquid equilibrium �VLE� line �2�. These relations
complement the complex multiparameter equations of state
�EOS� which have been developed to accurately fit the ther-
modynamic properties measured in the homogeneous do-
main. Such a phenomenological approach to estimate fluid
properties is commonly based on the multiparameter
corresponding-states principle �2–4�. In the following we call
k-CSEOS such an EOS which contains k�2 system-

dependent parameters. The main reason for the predictive
power of such a phenomenological approach is related to the
fact that the two-parameter corresponding-states �2-CS� prin-
ciple can be applied to any polynomial EOS which has a
liquid-vapor critical point �5�. However, in spite of increas-
ing the number of fluid-dependent parameters, the common
calculation of interfacial properties from ancillary equations
and k-CSEOS, is not only mathematically complex, but is
also unable to account for �1� the molecular fluid complexity
�3�, especially the nonspherical symmetry of molecules and
the quantum behavior of light fluids �4� and �2� the
asymptotic scaling of the critical phenomena close to the
gas-liquid critical point �6�, especially the nonanalytic Ising-
like nature �7,8� of critical exponents �9�.

Among these interfacial properties, the capillary length
lCa, or more precisely the squared capillary length �lCa�2 also
called the Sugden factor �10� and noted Sg in the following,
plays a special role on Earth’s gravity environment �recalled
here by subscript g�. The Sugden factor reflects the balance
between interfacial and volumic forces, which determines
the shape and position of the interface at equilibrium when
subject to the gravity field of constant acceleration g. In the
case of perfect liquid wetting, Sg is then related to the surface
tension � and the density difference ��LV=�L−�V between
coexisting liquid �density �L� and vapor �density �V� phases
by the equation*Electronic address: garrabos@icmcb-bordeaux.cnrs.fr
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Sg =
2�

g��LV
. �1�

Therefore, the knowledge of the Sugden factor is important
to provide better control on nonhomogeneous fluid proper-
ties.

In addition, as clearly documented two decades ago
�11–13�, the temperature dependence of Sg, along a large
temperature range of the VLE line of all investigated one-
component fluids �11,12,14–22�, shows a pure power law
behavior which is applicable over an appreciably larger tem-
perature range �see below Eq. �2� and the related discussion
of the Fig. 1�a��. Such a weak temperature dependence of the
effective exponent at small but finite distance of the critical
point was partly well-understood to be related to the smallest
value ��0.51 �9�, see below Table III� of the confluent ex-
ponents which govern the corrections to asymptotic scaling
of critical phenomena �23�. However, the theoretical reason
to observe a near zero value of the amplitude contribution of
the confluent corrections in the Sugden factor case remains
unclear, especially in the absence of estimation of the cross-
over behavior of the surface tension.

Indeed, the significant theoretical improvements to ac-
count for classical-to-critical crossover �8�, especially in the
one-component fluids �6�, provide the most powerful tools
available today to analyze accurately interfacial properties in
large temperature ranges. For example, in the present work,
using the crossover functions recently derived �24,25� from
the massive renormalization scheme in three dimension �d
=3� �26–29�, our main objective is to accurately estimate this
leading asymptotic behavior of Sg from scaling arguments
�1,30–32� and available description �33,34� of the master sin-
gular behavior of the one-component fluid “subclass.” Such a
description is based on the formal analogy between the scale
dilatation of the physical field variables proposed by Garra-
bos �35–37� and the linear relation between the physical
fields and the scaling fields needed by the renormalization
theory �38�. The major advantage of this scale dilatation
method is to estimate the universal behavior of any one-
component fluids without any adjustable parameter, by using
only the four critical coordinates of its liquid-vapor critical
point �excluding quantum fluids here �37� to simplify the
presentation of the scale dilatation method�.

The paper is organized as follows. Section II demonstrates
the master singular behavior of Sg observed from the scale
dilatation method. The corresponding Ising-like asymptotic
description of Sg based on hyperscaling �1,30–32� and mas-
sive renormalization description �26,28,29� of the critical
crossover is reported in Sec. III. The master leading terms of
the crossover functions for the correlation length and the
susceptibility in the homogeneous domain �24,25�, are used
to demonstrate that the master behavior observed in the �non-
homogeneous� extended asymptotic domain can be predicted
within experimental precision. The discussion given in Sec.
IV shows the main points to be considered for a classical-to-
critical crossover description of the interfacial properties at
finite temperature distance to the critical temperature. Spe-
cifically, we precisely estimate the temperature range where
this theoretical treatment becomes inappropriate to represent

the increasing noncritical microscopic difference between
gas and liquid approaching the triple point temperature. Con-
clusion is given in Sec. V.

II. MASTER SINGULAR BEHAVIOR OF THE SUGDEN
FACTOR

A. The data sources

The Sugden factor measurements Sg���T�� as a function of
the temperature distance �T=T−Tc to the critical point in
the nonhomogeneous range T�Tc, have been published and
analyzed for several one-component fluids �11–22,39�. T �Tc�
is the temperature �critical temperature�. Sg���T�� data were
generally obtained along the critical isochore �=�c in a finite
temperature range bounded by max and min values of ��T�
=Tc,exp−T, where Tc,exp was the measured �or estimated�
critical temperature in the experiments �� ��c� is the density
�critical density��. The relative precision claimed by the au-
thors was generally lower than 10%. For most fluids, Sg was
fitted using the effective power law �1,11,13�

Sg = S0,e���*��e, �2�

where the dimensionless temperature distance ���*� to the
critical point was defined by

���*� =
��T�
Tc,exp

=
Tc,exp − T

Tc,exp
. �3�

In Eq. �2�, the free amplitude S0,e was a fluid-dependent
quantity related to the effective value �e�0.91−0.97 of the
free �or fixed� exponent �e considered as a physical param-
eter when measurements were performed in a restricted tem-
perature range at finite distance to Tc,exp. The corresponding
parameter set �e ;S0,e �with free or fixed value of �e� for each
selected fluid is summarized in columns 3 and 4 of Table I.
However, admitting now that ��* is the relevant physical
field �30� to describe the singular scaling behavior of the
thermodynamic fluid properties in the homogeneous or non-
homogeneous domains along the critical isochore, the three
main critical phenomena features of this effective fitting
analysis are as follows.

�i� The correlation between the effective values of S0,e and
�e is highly dependent on Tc,exp and on the �min and max�
values of the temperature range covered by the fit close to
the critical point; especially when local values of �e are es-
timated in the temperature range lower than ���*��0.05, the
common averaged value �e=0.935±0.015, equal to the
asymptotic universal value �=2	−
=0.935±0.004 obtained
from the present theoretical estimation of the critical expo-
nents 	=0.6304±0.0013 and 
=0.3258±0.0014 �9� �see be-
low Eq. �5��, appears consistent with the Sg singular behav-
ior, whatever the one-component fluid.

�ii� Accordingly, the temperature dependence of the effec-

tive exponent �defined here as
��ln�Sg��

��ln����*��� �, is very small, over

a larger temperature range, whatever the one-component
fluid or the temperature extension of the fit. Therefore the
sign of the small amplitude of the leading confluent term
cannot be unambiguously defined �see below Eq. �4� and the
related discussion�.
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�iii� The measured value of the effective exponent is never
observed to be equal to the mean-field value �MF=1, even in
a temperature range far from the critical temperature, what-
ever the one-component fluid.

As a matter of fact, it is well-established now �8� that the
range of validity of the asymptotic scaling form of Eq. �2� is
strictly restricted to the asymptotic approach of the liquid-
gas critical point, when �� ���*�� and ��LV� ���*�
 simul-
taneously go to zero for ��*→0 in Eq. �1�. �= �d−1�	
�1.261 and 
�0.326 are the universal values �9� of the
critical exponents related to the temperature dependence of �
and ��LV, respectively, and 	�0.63 is the universal value
�9� of the critical exponent for the correlation length 
 of
density fluctuations, with 
� ���*�−	 �see also Ref. �8� for
details of notations and definitions�. However, at small but
finite ���*�, any pure power law such as Eq. �2� must be

modified to account for confluent corrections to scaling usu-
ally represented by the Wegner-like expansion �23� with the
universal features of uniaxial three-dimensional �3D� Ising-
like systems �8�. Then, in the case of Sg:

Sg = S0���*���1 + 	
i=1

�

Si���*�i�
 , �4�

where ��0.51 is the universal value �9� of the critical ex-
ponent which characterizes the leading family of the conflu-
ent corrections to scaling. The amplitudes S0, S1 , . . .Si, etc.,
are fluid-dependent quantities. Equation �4� means that the
effective critical exponent �e only takes its universal �Ising�
value

TABLE I. Effective exponent �e �column 3� and effective leading amplitude S0,e �see Eq. �2�� �column 4�
of the Sugden factor Sg��lCa�2 �lCa is the capillary length� for several one-component fluids �column 1�.
From data sources and selected fitting results of references given in column 2. Calculated values of the
physical amplitude S0,� �column 5� and the master amplitude ZS,� �column 7�. See text for this work and
Refs. given in column 6. The residual �ZS,�=100�ZS,�

ZS
−1� �expressed in %� is given in column 8, where the

master value ZS=2.47 is estimated from Eq. �43�.

Fluid Ref �e

S0,e

�mm2�
S0,�

�mm2� Ref. ZS,�

�ZS,�

%

Ar �17� 0.940 4.13 4.036 �13� 2.423 −1.9

�12� 0.913 3.78 4.18 This work 2.510 +1.6

Xe �18� 0.942 3.05 2.953 �13� 2.668 +8.0

N2 �17� 0.930 5.46 5.59 This work 2.446 −1.0

�12� 0.926 5.10 5.32 This work 2.328 −5.7

O2 �12� 0.909 4.85 5.47 This work 2.563 +4.6

CO2 �19� 0.933 9.47 9.52 �13� 2.55 +3.3

�12� 0.920 8.40 9.0 This work 2.411 −2.4

SF6 �11� 0.943 3.931 3.84 �13� 2.46 −0.4

CCl3F �R11� �11� 0.928 6.234 6.44 This work 2.470 0.0

CCl2F2 �R12� �11� 0.936 5.615 5.589 This work 2.476 +0.3

CClF3 �R13� �19� 0.972 5.33 4.5 This work 2.268 −8.1

�11� 0.9379 4.847 4.783 This work 2.411 −2.4

CBrF3 �R13B1� �11� 0.938 3.879 3.826 This work 2.374 −3.1

CHClF2 �R22� �11� 0.937 6.859 6.796 This work 2.323 −6.0

C2H4 �14� 13.90 �13� 2.480 +0.4

CH4 �12� 0.933 13.6 13.73 This work 2.382 −3.6

C2H6 �14,16� 14.42 �13� 2.437 −1.3

i-C4H10 �15� 12.71 �13� 2.392 −3.2

n-C5H12 �39� 0.935 12.916 2.488 +0.7

n-C6H14 �39� 0.935 12.753 2.445 −1.0

n-C7H16 �39� 0.935 12.520 2.552 +3.4

n-C8H16 �39� 0.935 12.217 2.520 +2.0

H2O �22� 34.72 �13� 2.262 −8.4

�21� 0.91 33.2 37.25 This work 2.427 −1.7

�ZS,�
 2.4530 ±3.1

ZS 2.47
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� = � − 
 = �d − 1�	 − 
 � 0.935 �5�

asymptotically close to Tc, i.e., when ��*→0. Therefore, the
weak temperature dependence of the effective exponent at
finite value of ��*, mainly shows low rate of convergence of
the Wegner expansion. Moreover, in the fitting of the experi-
mental Sg data, if the contribution of the confluent correction
terms is negligible, then 	i=1

� Si���*�i��0 in Eq. �4�.
The singular decreasing behavior of the Sugden factor

Sg��lCa�2 �m2� as a function of the temperature distance
Tc−T �K� is illustrated in Fig. 1�a� �log-log scale� for eigh-
teen one-component fluids. Each curve has a relative tem-
perature extension corresponding to the experimental tem-
perature range �including for some fluids measurements until
their triple point temperature TTP�. The mean �theoretical�
value �=0.935 of the effective slope of these curves is indi-
cated. The Sg values at Tc−T=1 K cover one decade, from
1.5�10−8 m2 for sulfurhexafluoride �with S0=3.84 mm2�, to
1.0�10−7 m2 for methane �with S0=13.80 mm2�. To illus-
trate the weak temperature dependence of �e, the Sugden
factor can be divided by �Tc−T�� �with �=0.935� �13�.
Therefore, this convenient scaled form

Sg

�Tc−T�� �m2K−��,
makes the order of magnitude of the leading amplitude con-
tribution �i.e., Sg�T=Tc+1 K��S0�Tc�−�� of each fluid
clearly distinguishable in Fig. 1�b� �log-log scale�, while the
quasihorizontal line whatever the fluid �except the water

case, see Sec. IV C� shows that the confluent contribution is
very small �i.e., 	i=1

� Si�Tc�−i��Tc−T�i��0�.
We have noted that some of the data reported in Fig. 1�a�

have been measured in a large temperature range on the VLE
line, including measurements close to TTP. For practical
graduation of the temperature axis from the asymptotic criti-
cal range to the triple point temperature, we have marked by
vertical arrows the temperature distance where T=0.7Tc �i.e.,
the temperature used to define the practical fluid-dependent
acentric factor �40��. The temperature range between 0.3Tc
�Tc−T�Tc−TTP �the right hand side of the corresponding
arrows in Fig. 1�a�� is considered to be far away from the
critical point. In the opposite direction when Tc−T→0, the
practical temperature range where the Wegner-like expansion
fits the singular behavior does not usually exceed a few per-
cent in ���*� �41�. To distinguish the asymptotic temperature
range Tc−T�0.01Tc close to the critical point where the use
of Eq. �4� has a theoretical justification, as discussed below
in Sec. III, vertical arrows at T=0.99Tc have been added in
Fig. 1�a�. To introduce the main physical parameters needed
for accurate description of the singular behavior of Sg in this
asymptotic temperature range, the next subsection presents
the application of the scale dilatation method �35,36� leading
to define the dimensionless form �noted Sg

*� and the renor-
malized form �noted Sg*

* � of the Sugden factor, with two
objectives: �1� to show that any modeling based on the 2-CS
principle is inaccurate to describe the fluid dependence of
dimensionless Sg

* �see below Eq. �12�� as a function of the
dimensionless temperature field ���*�=

Tc−T

Tc
, and �2� to unam-

biguously show the master singular behavior of renormalized
Sg*

* �see below Eq. �18�� as a function of the renormalized
temperaturelike field, noted T* �see below Eq. �14��.

B. The scale dilatation method to observe the master singular
behavior

The following analysis of the Sugden factor from the
scale dilatation method is similar to the one of the correlation
length given in Ref. �33�. Therefore, we recall only the main
features of the scale dilatation method �ignoring the quantum
contributions at T�Tc �37��. The input data are the four
critical coordinates

Qc,ap̄

min = �Tc,vp̄,c,pc,�c� = �� �p

�T
�

vp̄,c



CP
� �6�

which localize the liquid gas critical point on the phase sur-
face of equation of state �ap̄

p �p ,vp̄ ,T�=0, for each fluid par-

ticle of mass mp̄ �42�. p is the pressure, vp̄ is the particle
volume, and ap̄�T ,vp̄� is the Helmholtz energy per particle.
The subscript p̄ refers to a particle quantity and all the defi-
nitions and notations related to Eq. �6� are given in Refs.
�35–37�. The critical data related to the fluids selected in
Table I are reported in Table II. We note that the Tc values in
Table II, which were obtained from the thermodynamic
analysis of the phase surface, can be slightly different from
the Tc,exp values given in the experiments referred in Table I.
Also �c=

mp̄

vp̄,c
values from Table II can be slightly different

FIG. 1. �Color online� �a� Singular decreasing behavior �log-log
scale� of Sg �expressed in m2� with effective slope �e

=0.935±0.015�=��, as a function of the temperature distance Tc

−T, for eighteen nonhomogeneous one-component fluids �see also
Tables I and II�. The inset gives the color indexation for each fluid.

�b� Log-log scale of
Sg

�Tc−T�� �expressed in m2K−�, with �=0.935�, as

a function of the temperature distance Tc−T, which shows the weak
temperature dependence of the effective exponent �e. For each
fluid, two arrows indicate the practical temperature distances of
Tc−T=0.01Tc and Tc−T=0.3Tc, respectively �see text for detail�.

GARRABOS et al. PHYSICAL REVIEW E 75, 061112 �2007�

061112-4



from the experimental critical density values reported in
these experiments.

In combining Qc,ap̄

min , the Boltzmann constant kB, and space

dimensionality d=3, Eq. �6� can be written in a more conve-
nient form, such that

Qc
min = ��
c�−1,�c,Zc,Yc� , �7�

where

�
c�−1 = kBTc, �8�

�c = � kBTc

pc
�1/d

, �9�

Zc =
pcvp̄,c

kBTc
, �10�

Yc = �c�
Tc

pc
− 1 �11�

define four scale factors: one energy scale unit �
c�−1, one
length scale unit �c, and two dimensionless scale factors Zc
and Yc characterizing two preferred directions across the
critical point, along the critical isotherm and the critical iso-
chore, respectively. �c, which does not depend on the size
L��V�1/d of the container, has a clear physical meaning as
length unit �35�: it represents the spatial extent of the short-
ranged �Lennard-Jones like� molecular interaction �43�,

which allows us to define vc,I=
kBTc

pc
as the volume of the

microscopic critical interaction cell of each fluid. Zc is the
usual critical compression factor. Furthermore, �Zc�−1

=ncvc,I is the number of particles that fills vc,I. nc is the
critical value of the number density n= 1

vp̄
= �

mp̄
. Then the

minimal set of data in Eq. �7� is related to the thermody-
namic properties of the critical interaction cell of size �c
= �vc,I�1/d �44�.

We recall that the critical compression factor Zc, and the
critical Riedel factor �R,c �45� �related to Yc by �R,c=Yc+1�,
are among the basic parameters used to develop 4-CSEOS’s
for engineering fluid modeling �46�. The characteristic units
�
c�−1 and �c are the parameters needed to provide a dimen-
sionless analysis of the fluid properties, leading to their ca-
nonical description based on the two-parameter correspond-
ing state �2-CS� description. Obviously, the dimensionless
form of the Sugden factor is given by

Sg
* =

Sg

��c�2 . �12�

Figure 2 �log-log scale� represents the confluent behavior of

the rescaled dimensionless quantity
Sg

*

���*�� as a function of the
dimensionless temperature distance ��*. Figure 2 comple-
ments Fig. 3 initially published by Moldover in Ref. �13�,
after normalization of the vertical axis by ��c�2. Figure 2
illustrates the results of any classical two-parameter corre-
sponding state theory �here the two characteristic parameters
are �
c�−1 and �c�. Figure 2 shows the failure of the 2-CS

TABLE II. Set of critical parameters �see Eqs. �6� and �7�� for twenty one-component fluids of particle
mass mp̄ �42�.

Fluid
mp̄

�10−26 kg�
Tc

�K�
vp̄,c

�nm3�
pc

�MPa�
�c�

�MPa K−1�
�
c�−1

�10−21 J�
�c

�nm� Zc Yc

Ar 6.634 150.725 0.12388 4.865 0.191 2.08099 0.753463 0.2896 4.32882

Xe 21.803 289.733 0.19589 5.84 0.1182 4.0003 0.881508 0.28601 4.85434

N2 4.652 126.214 0.14814 3.398 0.1715 1.74258 0.80043 0.288875 5.37014

O2 5.314 154.580 0.12187 5.043 0.1953 2.13421 0.750786 0.287972 4.98641

CO2 7.308 304.137 0.15622 7.3753 0.170 4.19907 0.82882 0.27438 6.0104

SF6 24.255 318.735 0.32769 3.754 0.0835 4.40062 1.0544 0.27954 6.0896

CCl3F 22.810 471.110 0.41174 4.4076 0.0655 6.50438 1.13850 0.27901 6.00530

CCl2F2 20.078 384.930 0.35562 4.1249 0.0745 5.31454 1.08814 0.27602 5.95186

CClF3 17.348 301.88 0.29807 3.877 0.0910 4.16791 1.02441 0.27727 6.08861

CBrF3 24.727 340.19 0.33191 3.956 0.0810 4.69683 1.05889 0.27956 5.96985

CHClF2 14.359 369.30 0.27454 4.990 0.0965 5.09874 1.00721 0.26869 6.14259

C2H4 4.658 282.345 0.21667 5.042 0.11337 3.89820 0.91781 0.28131 5.34856

CH4 2.664 190.564 0.16361 4.5992 0.14442 2.63102 0.830133 0.28679 4.9838

C2H6 4.993 305.322 0.24171 4.872 0.10304 4.21554 0.95290 0.27935 5.45505

i-C4H10 9.652 407.844 0.43020 3.629 0.0610 5.63084 1.15770 0.27726 5.93407

n-C5H12 11.981 469.70 0.521785 3.3665 0.0511 6.48491 1.24425 0.270875 6.12956

n-C6H14 14.310 507.49 0.61138 3.0181 0.043658 7.00666 1.3186 0.26667 6.30719

n-C7H16 16.6386 540.13 0.7168 2.727 0.038068 7.45731 1.3983 0.26218 6.64356

n-C8H18 18.9683 568.88 0.81839 2.486 0.033768 7.85424 1.46746 0.258978 6.82776

H2O 2.991 647.067 0.09268 22.046 0.275 8.93373 0.740 0.229 7.071
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principle in terms of molecular fluid complexity since, from
xenon to water, the dimensionless Sugden factor covers one
order of magnitude at the same reduced temperature distance
to the critical point. Moreover, in terms of classical critical
phenomena, using Eq. �1� where ��LV� ���*�
MF and �
� ���*��MF with 
MF= 1

2 and �MF= 3
2 �47�, we obtain the mean

field exponent �MF=1. This mean-field value associated to
the classical behavior of the correlation length �with expo-
nent 	MF= 1

2 � expected from Van der Waals–like theories
�47,48�, is unable to describe the experimental results, even
at large temperature distance, as shown by the significantly
positive slope �MF−��0.065 reported in Fig. 2. In addition,
the scaling law �d−1�	=�, that explicitly involves d, is not
correct for mean-field exponents for d=3. We will turn back
to the mean-field theories in Sec. IV B when we will discuss
the related classical-to-critical crossover description of the
interfacial properties.

In the next step, the dimensionless scale factors Yc and Zc
are introduced throughout the scale dilatation method �36�.
Typically, the scale dilatation of the dimensionless tempera-
ture distance

��* = kB
c�T − Tc� �13�

leads to the renormalized thermal field

T* = Yc��*. �14�

The scale dilatation of the dimensionless order parameter
density

�m* = ��c�d�n − nc� = �Zc�−1��̃ �15�

leads to the renormalized order parameter density

M* = �Zc�d/2�m* = �Zc�1/2��̃ , �16�

where ��̃=
�−�c

�c
. In addition, the renormalized form �*�
*

= 

�c

of the correlation length 
 �37�, leads to the renormal-
ized form, noted �*, of the surface tension � such that �49�

�* � �* = �
c��c�d−1. �17�

Taking into account Eqs. �1� and �12�, the renormalized Sug-
den factor Sg*

* reads �49�

Sg*
* = g*�Zc�−3/2�lCa

* �d−1 = g*�Zc�−3/2Sg
* �18�

with g*=mp̄
c�cg. Therefore, after application of the scale
dilatation method, the renormalized form of Eq. �1� is given
by

Sg*
* =

�*

MLV
* , �19�

where MLV
* =

nL−nV

2 �Zc�d/2��c�d=
��LV

2�c
�Zc�1/2 �nL and nV are the

liquid number density and vapor number density on the VLE
line, respectively�. As expected �35�, the collapse of all data
on master curves obtained from the scale transformations

��* → T* = Yc��*,

Sg
* → Sg*

* = g*�Zc�−3/2Sg
* �case 1� ,

→Sg*
* �T*�−� �case 2� �20�

are shown in Figs. 3�a� �case 1� and 3�b� �case 2�, indepen-
dently of any theoretical form used to represent the master
behavior. Now, the scatter of the collapsed data corresponds
to the estimated precision �10%� for the Sugden factor of
each fluid.

C. Predictive power of the scale dilatation method within
the Ising-like preasymptotic domain

As initially shown in Ref. �36�, we can expect to fit the
master singular behavior of Sg*

* observed asymptotically
close to the critical temperature by a restricted �two-term�
Wegner-like expansion given by

Sg*
* = ZS�T*���1 + ZS

1 �T*��� , �21�

where ��0.935 and ��0.51 are the universal critical ex-
ponents, while ZS and ZS

1 are the master �i.e., unique� lead-
ing and confluent amplitudes, respectively, for all one-
components fluids. By term-to-term comparison of Eqs. �4�
and �21� using Eqs. �20�, we obtain the following relations:

ZS = g*��c�1−d�Zc�−3/2�Yc�−�S0, �22�

ZS
1 = �Yc�−�S1 �23�

which show the unequivocal link between master amplitudes
and system-dependent amplitudes, through Qc

min �Eq. �7��.
In other words, only when the fluid-dependent set Qc

min

and the master amplitudes ZS and ZS
1 are known, the re-

FIG. 2. �Color online� Singular behavior �log-log scale� of the

dimensionless quantity
Sg

*

���*�� as a function of the reduced tempera-
ture distance ���*�, using �c as a length unit and �
c�−1 as a energy
unit, for eighteen nonhomogeneous one-component fluids �see
Tables I and II�. Each distinguishable curve illustrates the failure of
the classical corresponding state scheme. The expected slope at
large temperature distance for a classical power law with mean field
exponent �MF=1 is illustrated by the direction difference �MF−�
�see text�. The respective temperature distances ���*�=10−2 and
���*�=0.3 are indicated by two arrows in lower horizontal axis �see
text and caption of 1�. The inset gives the fluid color indexation.
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stricted Wegner-like expansion �Eq. �4� with i�1� of Sg can
be determined for any one-component fluid by inverting Eqs.
�22� and �23�, i.e., S0= ��c�d−1�g*�−1�Zc�3/2�Yc��ZS and S1

= �Yc��ZS
1. Then, the master values of ZS and ZS

1 conform to
the universal features calculated for the Ising-like universal-
ity class �i.e., some combinations and ratios of ZS and ZS

1

take universal values, in agreement with the two-scale-factor
universality�. We will detail this point in Sec. IV. Before, in
the next section, the scale transformations of Eq. �20� are
shown to be in conformity with the asymptotic linearization
�38� of the two relevant fields needed by the renormalization
group theory. That leads indeed to the correct account for
universal features estimated in the preasymptotic domain and
the accurate determination of ZS using the present theoreti-
cal status provided by the massive renormalization scheme
�9,24�.

III. ISING-LIKE CROSSOVER FUNCTIONS FOR THE
SUGDEN FACTOR

To our knowledge, the theoretical function giving the
classical-to-critical crossover of the interfacial tension
����*� is not available from the massive renormalization
scheme, while the one of the coexisting density ��LV���*�
�25� remains affected by a large uncertainty on the value of
the first confluent amplitude. Therefore, using either Eq. �1�
for physical properties, or Eq. �19� for renormalized proper-
ties, the related crossover functions of the physical and
renormalized Sugden factor remain undetermined from a the-
oretical point of view. Especially the value of ZS

1 �S1, respec-
tively� in Eq. �21� �Eq. �4�, respectively� cannot be estimated
from theoretical prediction of the universal value of the con-
fluent amplitude ratios related to the lowest confluent expo-
nent � �see also our discussion in Sec. IV A�. However, hy-
perscaling related to the two-scale-factor universality of the
asymptotic Ising-like description provides unambiguous de-
termination of the values of ZS �S0, respectively� in Eq. �21�
�Eq. �4�, respectively�. This determination is presented below
using the master forms of Ising-like crossover functions ob-
tained from the massive renormalization scheme.

We note that a form equivalent to Eq. �21� was also re-
covered in the crossover approach of Belyakov et al. �50�,
who used adjustable parameters as scale factors of the physi-
cal variables. The solution was obtained to first order in a �
expansion �with �=4−d�. It was not considered here due to
the arbitrary adjustment to provide the crossover to a classi-
cal behavior.

A. Asymptotic hyperscaling description of the Sugden factor

It is well-established experimentally �12,13� and theoreti-
cally �1,51,52,54� that the asymptotic limit for ��*→0 of the
product of surface tension ��� and squared correlation length
�
2� takes a universal value, noted R�


± , for the Ising-like
universality class. This result corresponds to the Widom’s
scaling law between the corresponding critical exponents 	
and � given by

�d − 1�	 = � �24�

with d=3 in our present study. Therefore, we can introduce
R�


± as follows:

R�

± = 
c lim������*���
���*��d−1���*→0±, �25�

where the superscript � refers to the singular behavior of 

above ��� or below ��� Tc. As a matter of fact, accounting

for the universal ratio

���*�0�


���*�0� =1.96 for the Ising-like univer-

sality class �8�, the amplitude combination R�

+

= �1.96�d−1R�

− shows that an interfacial property �here �

� ���*��� in the nonhomogeneous domain ���*�0� is related
in a universal manner to the correlation length in the homo-
geneous domain ���*�0�.

Considering the scaling law

d	 = � + 2
 �26�

it is also well-established that the amplitude combination
� 
0

+

�c
�−d �+

B2 , noted
RC

+

�R

+�d �using customary notations �7��, corre-

FIG. 3. �Color online� �a� Master singular behavior �log-log
scale� of the renormalized Sugden factor Sg*

* =g*�Zc�−3/2Sg
* �with

Sg
*=

Sg

��c�2 and g*=mp̄
c�cg�, as a function of the renormalized ther-

mal field �T*� �see text and Eq. �20��. �b� Master “confluent” behav-

ior of the rescaled quantity
Sg*

*

�T*�� , as a function of the renormalized
thermal field �T*� �see text and Eq. �20��. In �a� and �b�: The dashed
blue curve and full red curve correspond to Eqs. �45� and �40�,
respectively; see text for the �up and down� dashed curves; LPAD

�1f�

�Eq. �39�� and L�1f� �Eq. �55�� correspond to the extension of the
preasymptotic domain �full arrow with label PAD� and the extended
asymptotic domain �dotted arrow with label EAD�, respectively.
The graduation of the upper horizontal axis gives ���T��0�

=
�*�T*�0�

1.96 �see Eq. �54�� calculated from master crossover Eq. �32�
�see legend of Fig. 1�a��. The arrows in the lower horizontal axis are
related to ���*�=10−2 and ���*�=0.3, respectively, using �T*�
=Yc���*� with Yc given in Table II; the inset gives the fluid color
indexation.
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sponds to the universal value of the asymptotic limit for
��*→0 of the following combination of singular properties:

RC
+

�R

+�d = 4
c��c�2lim��T���*��
���*��−d

���LV����*���2 

��*→0±

. �27�

Equation �27� relates the respective singular behaviors of the
isothermal compressibility �T���*� �with critical exponent �

and leading amplitude �0
+= �+

pc
� in the homogeneous domain,

the correlation length 
���*� �with critical exponent 	 and
leading amplitude 
0

+� in the homogeneous domain, and the
order parameter density ��LV����*�� �with critical exponent

 and leading amplitude B0=2�cB� in the nonhomogeneous
domain.

Using Eqs. �1�, �25�, and �27� to eliminate both properties
�����*�� and ��LV����*��, we obtain the following
asymptotic equation:

lim�Sg����*�→0− = R�

+ �RC

+�1/2

�R

+�d/2

1

2�
c�3/2�cg

� lim�� 1

�T���*�
1


���*�
�1/2


��*→0+

�28�

which relates the asymptotical singular behavior of the Sug-
den factor in the nonhomogeneous domain to the ones of
�T���*� and 
���*� in the homogeneous domain. The corre-
sponding scaling law reads

�d

2
− 1�	 = � −

�

2
. �29�

The scaling laws given by Eqs. �24�, �26�, and �29� where
explicit reference to the space dimension is needed to con-
nect correlation exponents and thermodynamic exponents,
are characteristic of hyperscaling and reflect the universal
features related to the two-scale-factor universality, which do
not depend on the �homogeneous or nonhomogeneous� do-
main �see also Ref. �55��.

B. The master crossover of the one-component fluid subclass

We are now able to construct a pseudocrossover function
based on Eq. �28�. This pseudocrossover function for the
Sugden factor accounts exactly for the asymptotic two-scale
factor universality but agrees only qualitatively with the one-
parameter Ising-like critical crossover description at finite
distance to the critical point. As a matter of fact, accurate
mean expressions of the complete classical-to-critical cross-
over were recently proposed by Bagnuls and Bervillier �24�
and written in appropriate Ising-like asymptotic forms by
Garrabos and Bervillier �25� to account for error bars asso-
ciated with the estimations of the universal exponents near
the nontrivial fixed point. Moreover, introducing only three
characteristic numbers L�1f�, ��1f�, and ��1f� �see Ref. �34�
for details�, these crossover functions can be easily modified
to accurately describe the master singular behavior of the
one-component fluid subclass. In this description, two lead-
ing amplitudes �Z�

+ and Z

+� and one confluent amplitude

�Z�
1,+ or Z


1,+� can be selected as characteristic parameters of
the Ising-like universal features observed in the Ising-like
preasymptotic domain. Z�

+, Z

+, Z�

1,+, and Z

1,+ are associated

to the crossover behaviors of the master correlation length
���T�� and the master susceptibility X��T�� in the homoge-
neous domain �T��0�. We recall that the corresponding
master crossover functions are asymptotically approximated
by the restricted �two terms� Wegner-like expansions given
by the respective equations

�*�T*� = Z

+�T*�−	�1 + Z


1,+�T*��� , �30�

X*�T*� = Z�
+�T*�−��1 + Z�

1,+�T*��� , �31�

where Z�
+=0.119, Z


+=0.570, Z�
1,+=0.555 and Z


1,+=0.377
are the constant values of the master �i.e., fluid independent�
amplitudes, with universal ratio

Z

1,+

Z�
1,+ =0.68 �9�. Accordingly,

the master crossover functions are given by the following
equations:

1

�*�T*�
= Z


�1f�Z

+t	�

i=1

i=3

�1 + X
,it
D�t��Y
,i, �32�

1

X*�T*�
= Z�

�1f�Z�
+t��

i=1

i=3

�1 + X�,it
D�t��Y�,i �33�

with

D�t� =
� + �MFS2

�t

1 + S2
�t

�34�

and

t = ��1f�T*. �35�

All critical exponents �	, �, �, �MF� and constants �Z

+, Z�

+,
X
,i, Y
,i, X�,i, Y�,i, S2� of the mean crossover functions de-
fined in Ref. �25� are reported in Table III. Furthermore, in
Eqs. �32� and �33�, the prefactors Z


�1f� and Z�
�1f� relate the

asymptotic master behaviors given by Eqs. �30� and �31�,

TABLE III. Values of the universal exponents and universal
parameters for the mean crossover functions estimated in Ref. �25�:
�a� correlation length in the homogeneous domain, �b� susceptibility
in the homogeneous domain.

�a� exponent Z

+ S2 i X
,i Y
,i

	=0.6303875 2.121008 22.9007 1 40.0606 −0.098968

�=0.50189 2 11.9321 −0.15391

	MF=0.5 3 1.90235 −0.00789505

Z

1,+= 5.81623

�b� exponent Z�
+ S2 i X�,i Y�,i

�=1.2395935 3.709601 22.9007 1 29.1778 −0.178403

�=0.50189 2 11.7625 −0.282241

�MF=1.0 3 2.05948 −0.0185424

Z�
1,+= 8.56347
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respectively, and satisfy to unequivocal estimations from the
three characteristic numbers L�1f�, ��1f�, and ��1f� of the one-
component fluid subclass �34�, such that

Z

�1f� = �Z


+Z

+���1f��	�−1 � L�1f�, �36�

Z�
�1f� = �ZX

+Z�
+���1f����−1 = ��L�1f��d���1f��2�−1. �37�

The scale factor ��1f� is defined from the following ratios of
the confluent amplitudes:

��1f� = �Z

1,+

Z

1,+ �1/�

= �ZX
1,+

ZX
1,+ �1/�

�38�

where Z

1,+=−	i=1

i=3X
,iY
,i and Z�
1,+=−	i=1

i=3X�,iY�,i, with
Z


1,+

Z�
1,+

=0.68 �25�. All the values of these master constants are given
in Table IV.

We also note that the master prefactors Z

�1f� and Z�

�1f�, as
with all the other prefactors which modify the initial cross-
over functions to account for master behavior of the renor-
malized fluid properties, take the same value above and be-
low the critical temperature, while only two of them are
characteristic of the pure fluid subclass. In addition, the
single master crossover parameter ��1f� is the same for any
property along the critical isochore, above and below the
critical temperature. As demonstrated in Refs. �25,34�, it is
possible to define unambiguously the extension T*�LPAD

�1f� of
the preasymptotic domain where each master crossover func-
tion can be approximated by its restricted �two-term� expan-
sion. Using ��1f� �see Table IV� we obtain

T* � LPAD
�1f� =

LPAD
Ising

��1f� =
10−3

�S2�2��1f� � 5 � 10−4, �39�

where LPAD
Ising= 10−3

�S2�2 is defined in Ref. �25�.
After appropriate rescaling of the master form of each

property included in Eq. �28�, we define the following master
quantity:

Ŝ�T*� = R�

+ �RC

+�1/2

�R

+�d/2� 1

X*�T*�
1

�*�T*�
1/2

, �40�

where the correlation length and the susceptibility are given

by Eqs. �32� and �33�, respectively. Ŝ�T*� �Eq. �40�� is the
pseudocrossover function of the Sugden factor which ac-
counts for the massive renormalization description of the
classical-to-critical crossover, in the homogeneous domain
�see the discussion in next section�. The corresponding
curves �full red lines� in Figs. 3�a� and 3�b�, confirm the
perfect agreement with the master behavior of the one-
component fluid subclass when the leading asymptotic term

of Ŝ�T*�, with T*�0, corresponds to the one of Sg*
* ��T*��,

with T*�0, for �T*��T*→0, as shown below.

C. The master leading power law of the renormalized
Sugden factor

In the preasymptotic domain defined by Eq. �39�, the

above formulation of the master singular behavior of Ŝ�T*�,
can be approximated by a restricted �two term� expansion of
equation

Ŝ�T*� = ZS�T*���1 + ẐS
1,+�T*��� , �41�

where the decorated hat labels pseudophysical quantities.
Equation �41� contains the asymptotic constraint of Eq. �28�,
i.e.,

lim�Ŝ�T*��T*→0+ = lim�Sg*
* ��T*���T*→0−, �42�

where Sg*
* ��T*��, with T*�0, is given by Eq. �21�, while the

difference occurring to first order in confluent corrections to
scaling is discussed below �see Sec. IV A�. The leading am-
plitude ZS has the master form

ZS = R�

± �RC

+�1/2

�R

+�d/2 �Z�

+Z

+�−1/2. �43�

Using the universal values R�

+ =0.376�±0.017�

�7,12,13,51–54�, RC
+ =0.0574�±0.0020� �24�, R


+

TABLE IV. Universal and master constants of Eqs. �32� and �33� for the correlation length and the
susceptibility, respectively, in the homogeneous domain �see text and Refs. �25,34� for details�. Upper part
�lines 2 to 5� refers to the Ising-like leading term. The values of the three characteristic numbers of the one
component fluid “subclass” are reported in column 3, that demonstrates the unequivocal relation between the
“master” crossover functions �34� and the “mean” crossover functions �25�, with prefactors given in line 5.
Lower part �lines 6 to 8� refers to the first term of the confluent correction to scaling.

Correlation length Susceptibility

	=0.6303875 �=1.2396935

�Z

+�−1=0.471474 �Z�

+�−1=0.269571 ��1f�=4.288�10−3

Z

+= �Z


+L�1f����1f��	�−1=0.57 Z�
+= �Z�

+�L�1f��−d���1f��−2���1f����−1=0.119 ��1f�=1.74�10−4

Z

�1f��L�1f�=25.6988 Z�

�1f�= ��L�1f��d���1f��2�−1=1950.7 L�1f�=25.6988

�=0.50189

Z

1,+=0.68Z�

1,+=5.81623 Z�
1,+=8.56347

Z

1,+=Z


1,+���1f���=0.68Z�
1,+=0.377 Z�

1,+=Z�
1,+���1f���=0.555
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=0.2696�±0.0007� �24�, estimated for the Ising-like univer-
sality class, and the values Z�

+=0.119, Z

+=0.57 �see Table

IV�, we obtain

ZS = 2.47�±0.17� . �44�

We note that the error bar reported for each universal ampli-
tude combination only accounts for theoretical uncertainties
on the estimated values of the universal combinations R�


+ ,
RC

+, and R

+, while the “best” central values of the master

amplitudes Z�
+ and Z


+ are estimated using xenon as a stan-
dard one-component fluid. The large error bar �±5% � on R�


+

accounts for the theoretical values R�

+ �0.367�±0.009� and

R�

+ �0.372�±0.009� estimated by Zinn and Fisher �53� from

numerical studies of three-dimensional Ising models, the
�min and max central� values R�


+ �0.36�±0.01� and R�

+

�0.39�±0.03� quoted by Privman et al. �7� on the basis of
previous theoretical calculations, and the median values
R�


+ �0.386�±0.1� �13� and R�

+ �0.381�±0.01� �12� which

were initially obtained from the analysis of the experimental
situation for fluids �see Refs. �11,12,14–22��.

The published data of the effective exponent-amplitude
pair ��e ;S0,e� reported in Table I �columns 3 and 4� allows
one to validate this leading master description at finite dis-
tance to the critical point, using a method equivalent to the
one proposed by Moldover �13� to estimate S0 by averaging
the values of

Sg

���*�0.935 in the vicinity of ���*�=0.01. The cor-
responding Moldover’s values �noted S0,� to recall for the
use of the theoretical value �=0.935�, are given in column 5
of Table I. In our present work, we have estimated S0,� by the
following relation S0,�=S0,e�0.01��e−0.935 �see also columns 5
and 6, Table I�. From these “measured” amplitude data at
���*�=0.01, the corresponding calculated values �column 7�
of ZS,�= ��c�1−d�g*�1�Zc�−3/2�Yc�−�S0,� �see Eq. �22��, are in
close agreement with the asymptotic limit ZS=2.47 esti-
mated from above hyperscaling considerations. The mean
value of the data reported in column 7 is �ZS,�
=2.450. The
residuals �ZS,� �column 8�, expressed in %, are of the same
order of magnitude �±3.1% � than the experimental uncer-
tainty �±5% � �see, for example, the review of Moldover �13�
for a detailed analysis of the experimental errors�.

This extended master behavior is illustrated in Figs. 3�a�
and 3�b� by the curves �dashed blue lines� which correspond
to the pure power law of equation

Sg*
* = ZS�T*��, �45�

where ZS=2.47 �see Eq. �44��. In Fig. 3�b�, the two lines
labeled “up” �Eq. �45� with ZS=2.64� and “down” �Eq. �45�
with ZS=2.30�, respectively, account for the theoretical error
bar attached to the central value of ZS �see Eq. �44��. There-
fore, at least for a temperature range such that �T*��0.1, all
experimental results measured at finite temperature distance
to the critical point lie in between these two lines. As noted
previously, such a good agreement results from the “univer-
sal” median value �e��=0.935 of the effective exponent in
the vicinity of ��*=0.01. De facto, the asymptotical univer-
sal features can be observed in an extended asymptotic do-
main, since the confluent corrections to scaling attached to

the exponent �: �i� are only governed by the single scale
factor Yc whatever the singular property �as already shown
for the correlation length, the susceptibility, and the order
parameter density� and �ii� are certainly very small in ampli-
tude in the Sugden factor case. However, the present theo-
retical and experimental levels of uncertainties are of same
order of magnitude and remain too high to provide an accu-
rate estimation of the sign and amplitude of these �small�
confluent corrections.

As our explicit Eq. �40� is restricted only to the universal
features related to hyperscaling, there is a need for theoreti-
cal studies in the future to directly estimate the classical-to-
critical crossover of the surface tension and Sugden factor in
the nonhomogeneous domain. Anticipating these investiga-
tions, the following discussion gives some complementary
quantitative evaluations on the extended temperature range
where the asymptotic leading power law of Eq. �45� can be
correctly used to predict the Sugden factor behavior �since
the applicability of the scale dilatation method goes far be-
yond that of the �uncorrect� corresponding states principle�.

IV. DISCUSSION

A. Ising-like universal features within the preasymptotic
domain

As demonstrated in Refs. �25,34�, each crossover function
obtained from the massive renormalization scheme can be
approximated by a restricted �two-term� Wegner-like expan-
sion in the Ising-like preasymptotic domain which extends
up to

�T*� � LPAD
�1f� =

LPAD
Ising

��1f� � 5 � 10−4

�see the corresponding full arrow labeled “PAD” in �T*� axis
of Fig. 3�. Therefore, in addition to Eq. �21� related to the
master singular behavior of the renormalized Sugden factor,
we are also interested in the following similar equations:

MLV
* = ZM�T*�
�1 + ZM

1 �T*��� , �46�

�* = Z��T*���1 + Z�
1 �T*��� �47�

related to the master singular behaviors of the renormalized
order parameter density �see Eq. �16�� and renormalized sur-
face tension �see Eq. �17��, respectively. Obviously, the hy-
perscaling law d	=�+2
 corresponds to the universal com-

bination �Z

+�−d Z�

+

�ZM�2 =RC
+�R


+�d, while Eq. �19� provides the

“trivial” relation ZS=
Z�

ZM
. Both of these amplitude combina-

tions relate unequivocally ZM and Z� to the selected charac-
teristic leading amplitudes Z�

+ and Z

+ of the one-component

fluid subclass. Alternatively, Z� and Z

+ are unequivocally

related by the universal amplitude combination R�

+

=Z��Z

+�d−1. In this case, we can also calculate the universal

values Z�=R�

+ �Z


+�d−1=1.750 and ZS=
Z�

ZM
=1.867 of the cor-

responding leading amplitudes for the respective crossover
functions estimated in the massive renormalization scheme

�with Z

+=2.121, Z�

+=3.7096, and ZM = �RC
+Z�

+�−1/2� Z

+

R

+�d/2
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=0.9375; see Ref. �25� for detail�. Furthermore, in the rela-
tions �similar to Eqs. �32� and �33�� defining the master
crossover functions for the order parameter density, the sur-
face tension and the Sugden factor, the respective prefactors
ZM

�1f�, Z�
�1f�, and ZS

�1f� account for their unequivocal estimation
only using the three characteristic numbers L�1f�, ��1f�, and
��1f� of the one-component fluid subclass, such that,

ZM
�1f� =

ZM

ZM���1f��
 = �L�1f��d��1f�, �48�

Z�
�1f� =

Z�

Z�
+���1f���

= �L�1f��d−1, �49�

ZS
�1f� =

ZS

ZS���1f��� = �L�1f���1f��−1. �50�

Equations �48�–�50� close the master representation of the
singular behavior of the renormalized interfacial properties
in agreement with the two-scale factor universality of the
Ising-like systems �see the corresponding values of the uni-
versal and master quantities reported in Table V�.

Now, using Eq. �19� to compare the respective first con-
fluent amplitudes of Eqs. �21�, �47�, and �46�, we obtain
ZS

1 =Z�
1 −ZM

1 . From Fig. 3�b�, because the asymptotic master
singular behavior for Sg*

* ��T*�� gives ZS
1 �0, we can expect

the following universal values of the corresponding ampli-
tude ratios:

Z�
1

ZM
1 � 1,

ZS
1

ZM
1 = 0.9

ZS
1

Z�
1,+ � 0. �51�

Such hypothesized “universal ratios” are consistent with
Ising-like universal features of the asymptotic crossover es-
timated from the massive renormalization scheme, which are
only characterized by a single confluent amplitude within the
Ising-like preasymptotic domain. Here these universal fea-

tures are preserved via the universal ratio value
ZM

1

Z�
1,+ �0.9,

selecting Z�
1,+ as a characteristic confluent amplitude �see

Sec. III B above�. However, it is also important to note that
this expected crossover must satisfy the scaling law �=�
−
 in the infinite limit �T*�→�, which leads to the mean
field value �MF=1, using the mean-field values 
MF= 1

2 and
�MF= 3

2 �47�. In the range �T*��1, the experimental results
reported in Figs. 3�a� and 3�b� are in disagreement with such
a mean-field prediction �see also below Sec. IV C�.

In addition, we note that the hyperscaling description us-
ing a pseudocrossover function issued from singular proper-
ties in the homogeneous domain generates incorrect results
in the complete temperature range, i.e., from the first-order
contribution of Ising-like confluent exponent � until the
leading contribution related to the mean-field exponent �MF.
For example, in our scheme based on the hyperscaling law

TABLE V. Universal and master constants for the order parameter density �column 1�, the surface tension
�column 2�, and the Sugden factor �column 3�. Upper part �lines 2 to 5� refers to the Ising-like leading terms.
The unity value of the combinations between the master prefactors reported in line 6 demonstrates that the
asymptotic master crossover agrees with the two-scale-factor universality of the Ising-like systems. Lower
part �lines 7 to 10� refers to the first term of the confluent correction to scaling �see text for detail�.

Order parameter density Interfacial tension Sugden factor


=0.3257845 �=2	=1.260775 �=�−
=0.9349905

ZM = �RC
+Z�

+�−1/2�Z

+

R

+ �d/2

=0.937528 Z�=R�

+ �Z


+�d−1=1.6915 ZS=R�

±

�R

+�d/2

�RC
+�1/2

�Z�
+Z


+�1/2=1.8042

ZM =ZM�L�1f��d��1f����1f��
=0.468 Z�=Z��L�1f��d−1���1f���=1.1558 ZS=ZS

���1f���

L�1f���1f� =2.47

ZM
�1f�= �L�1f��d��1f�=2.94878 Z�

�1f�= �L�1f��d−1=660.428 ZS
�1f�= �L�1f���1f��−1=223.634

�Z

�1f��d

Z�
�1f��ZM

�1f��2
=1

Z�
�1f�

�Z

�1f��d−1

=1
ZS

�1f�

�Z

�1f�Z�

�1f��1/2
=1

�=0.50189

ZM
1 =0.9Z�

1,+=7.70712 Z�
1

Z�
1,+ �undefined�

ZS
1

Z�
1,+ �undefined�

ZM
1 =ZM

1 ���1f���=0.9Z�
1,+�0.5 Z�

1 �ZM
1 →

Z�
1

ZM
1 �1 �see Eq. �1��

Z�
1

Z�
1,+ �0.9→Z�

1 �0.5

ZS
1�0 �see Fig. 1�
ZS

1

Z�
1,+ =0.9

ZS
1

ZM
1 �0
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�= �+	
2 �see Eq. �29��, the confluent amplitude ẐS

1,+ in Eq.

�41� can be made equal to ẐS
1,+= 1

2 �Z�
1,++Z


1,+��0.466, lead-

ing to a universal ratio
ẐS

1,+

Z�
1,+ = 1

2�1+
Z


1,+

Z�
1,+��0.84 which is dif-

ferent from zero.
Similarly, a description based only on the hyperscaling

law �=2	−
 �see Eq. �24�� needs to replace the interfacial
tension by the inverse squared correlation length in Eq. �19�,
and provides another pseudocrossover function, given by the
equation

S̃��T*�� = R�

+ 1

MLV
* ��T*��� 1

�*�T*�
2

, �52�

where the tilde is here to distinguish this equation from Eq.
�40�. In that case, a mixing occurs between properties in the
homogeneous ��*�T*�� and nonhomogeneous �MLV

* ��T*���
domains. In the Ising-like preasymptotic domain, accounting
for the relation ZS=R�


± ZM�Z

+�−2, Eq. �52� can be approxi-

mated by

S̃�T*� = ZS��T*����1 + Z̃S
1��T*���� . �53�

In this latter scheme, the confluent amplitude Z̃S
1 in Eq. �53�

was estimated equal to Z̃S
1 =ZM

1 +2Z

1,+�1.254, leading to a

universal ratio
ẐS

1

Z�
1,+ =0.9+2

Z

1,+

Z�
1,+ �2.26 which is also signifi-

cantly different from zero.
Looking now at the contribution of the leading term close

to the Gaussian fixed point, our pseudocrossover functions
estimated above does not account for the appropriate mean-
field-like description due to the failure of the two hyperscal-
ing laws �= �+	

2 �which gives incorrect value �MF= 3
4 � and

�=2	−
 �which gives incorrect value �MF= 1
2 � when we use

the corresponding mean-field values �MF=1, 	MF= 1
2 , and


MF= 1
2 .

B. Ising-like master behavior in the extended asymptotic
domain

In spite of the absence of accurate theoretical modelling
for interfacial tension and Sugden factor along the VLE line,
the massive renormalization description of the master cross-
over observed for the one-component fluid subclass can be
used to provide a reasonable estimation of the renormalized
correlation length in the nonhomogeneous domain, using the
following equation:

�*�T* � 0� =
�*�T* � 0�

1.96
, �54�

where �*�T*�0� of Eq. �32� is the renormalized correlation
length in the homogeneous domain. Equation �54� assumes

that the universal ratio
�*�T*�0�

�*�T*�0� =1.96 is independent of the

renormalized temperature like field. The result �for T*�0� is
illustrated as a �*�T*�0� graduation in the upper horizontal
axis of Figs. 3�a� and 3�b�. We recall that �* gives the best
estimate of the ratio 


�c
between the effective size �
� of the

critical fluctuations and the effective size ��c� of the attrac-

tive molecular interaction. The latter one is here approxi-
mated by the range of the dispersion forces in Lennard-
Jones-like fluids, which is slightly greater than twice the
equilibrium distance re between two interacting particles of
finite hard core size �LJ, i.e., �c�2re, with re��LJ. There-
fore, �*��T*�=LCIC��1 in the upper axis of Figs. 3�a� and
3�b� is a rough estimate of the microscopic range of the
molecular attractive interaction between fluid particles. Such
a thermal field limit corresponds to the value LCIC�0.15
�here the subscript CIC recalls that the extent of the short-
ranged molecular interaction corresponds to the size of the
critical interaction cell�. Looking then at the “Ising-like” na-
ture of Sg*

* ��T*��, we observe in Figs. 3�a� and 3�b� a notice-
able extension of the critical range associated to the condi-
tion �*��T*�� 3. Therefore, the extended asymptotic domain
�dotted arrow labeled ‘‘EAD’’� goes up to the limit

�T*� � L�1f� � 0.03 �55�

�see the corresponding arrow noted L�1f� in �T*� axis�. Within
�T*��L�1f�, the observed master behavior can be well repre-
sented by Sg*

* =ZS�T*�� �see Eq. �45��, in conformity with the
Ising-like universal features estimated from the massive
renormalization scheme. We note that such Ising-like nature
of Sg*

* in this extended �T*� range complements in a self-
consistent manner our previous analysis �56� of the master
behavior of the renormalized order parameter density along
the VLE line.

C. Noncritical behavior beyond the Ising-like extended
asymptotic domain

In Ref. �56�, it was observed for the xenon case, that the
real crossover for the effective exponent 
e appears in the
thermal field range �DCO

* ��0.1–1 where �*��T*���1. We
have illustrated this restricted range by a double-arrow la-
beled DCO in Fig. 3�a�, where the upper x axis shows that the
“large” values, i.e., �T*��0.2, of the renormalized thermal

field correspond to
�*�T*�0�

1.96 �1. For the value LCIC�0.15
�lower axis of Fig. 3�b��, the condition �*��T*�=LCIC��1
�upper axis of Fig. 3�a��, corresponds to a rough estimate of
the microscopic range of the molecular attractive interaction
between fluid particles, as shown above in Sec. IV B. There-
fore, in terms of comparison between the correlation length
and the range of the microscopic intermolecular interaction,
the situation is similar to the one encountered in the homo-
geneous domain for the real crossover for the effective ex-
ponent �e �33�. Indeed, when �*�T*!0��1, any crossover
function is not appropriate to account for the real nonuniver-
sal behavior of the one-component fluids. We recall for ex-

ample that �*�T*�0��
�*�T*�0�

1.96 � 1
2 �see the limiting curve m

in Fig. 3�b�� corresponds to a �nonuniversal and nonmaster�
microscopic arrangement where the direct correlation dis-
tance between two interacting particles reaches the order of
magnitude of the two particle equilibrium position re, i.e.,

���*�0��re �with re��LJ, where �LJ is the size of the
particle�. As previously noted in Ref. �56�, the nonhomoge-
neous fluid is then made of coexisting gas and liquid phases
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which show significant differences in the averaged quantity
of particles inside the critical interaction cell. Moreover,
these differences increase upon approaching the triple point
temperature, since the low density gas tends to behave as a
perfect gas with one �i.e., noninteracting� particle within the
volume of the critical interaction cell, while the condensed
liquid tends to minimize the configuration energy of one par-
ticle by enclosing them in a particle cage made with an in-
creasing number �up to twelve for the rare gas case� of the
closest neighboring �repulsive� particles �i.e., the mean size
dNPC of the neighboring particle cage is such that re�dNPC
��LJ�. For such “low” and “high” local densities, coopera-
tive density fluctuations in the nonhomogeneous domain
have no physical sense at length scale larger than �c and only
the nonuniversal microscopic characteristics of each one-
component fluid are involved in the thermodynamic proper-
ties, as clearly illustrated in Fig. 3�b� for the Sugden factor
case, by the significant increasing differences between the
rescaled data for xenon and water, in the range �T*��0.2 �or
�*�1�.

V. CONCLUSION

Examining a large set of experimental data, we have
shown that the Sugden factor �or squared capillary length� of
one-component fluids obeys a universal �master� singular be-

havior as a function of the distance to the critical temperature
when these physical quantities are renormalized by the four
convenient, fluid-dependent parameters, provided by the
scale dilatation method. This master behavior can be related
by hyperscaling to that of the renormalized correlation length
of the density fluctuations and the renormalized isothermal
susceptibility in the homogeneous domain. Using a previous
analysis within a massive renormalization scheme in field
theory of the two latter quantities, we show that the observed
behavior of the Sugden factor is, to leading order, consistent
with this theoretical prediction. The four critical coordinates
which localize the gas-liquid critical point on the pressure,
volume, temperature phase surface are then sufficient to es-
timate the four fluid-dependent parameters needed to calcu-
late this asymptotic singular behavior of the Sugden factor.
We also define the temperature range in renormalized units
where this theoretical analysis holds practically, i.e., up to
�T*��0.03 �or �*�3� in the nonhomogeneous domain. This
range is similar to that for the renormalized order parameter
�proportional to the density difference between coexisting
liquid and vapor�. In a future work, we will show that this
master crossover behavior is useful to gain insight in the
so-called parachor correlations �i.e., the surface tension ex-
pressed as power law functions of the liquid-vapor density
difference along the VLE line�.
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